Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes

نویسندگان

  • Sean F. McWilliams
  • Kenton R. Rodgers
  • Gudrun Lukat-Rodgers
  • Brandon Q. Mercado
  • Katarzyna Grubel
  • Patrick L. Holland
چکیده

Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage.

The CO-releasing behaviours of nine diiron carbonyl complexes () were examined via the substitution reaction of cysteamine (CysA), of which complex was reported recently. These complexes fall into three categories, the diiron core bridged by two thiolates, a dithiolate and 1,8-naphthalene dithiolate. Our results reveal that the CO-releasing rates of these complexes are highly dependent on their...

متن کامل

Diiron bridged-thiolate complexes that bind N2 at the Fe(II)Fe(II), Fe(II)Fe(I), and Fe(I)Fe(I) redox states.

All known nitrogenase cofactors are rich in both sulfur and iron and are presumed capable of binding and reducing N2. Nonetheless, synthetic examples of transition metal model complexes that bind N2 and also feature sulfur donor ligands remain scarce. We report herein an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. A new binucleating ligand scaffold i...

متن کامل

Topological Analysis of Theoretical Charge Density of Alkali Metal Cations (LC, Na+, le)ICrown Ether (18e6) Complexes

The DO1(18c6)fi (MwLi. Na. K and I 8c6=18-crown-6) complexes have been chosen as the model systems toinvestigate the nature of chemical bonds between alkali metal cations and large mffitidentaie orgmnic ligands.The B3LYP/6-3I+G(d,p) level of calculation has been used for obtaining equilibrium geernetnes and p(r)functions (electron density distributions). By the aid of fundamental physical theor...

متن کامل

Family of cofacial bimetallic complexes of a hexaanionic carboxamide cryptand.

A series of coordination compounds has been prepared comprising manganese, iron, nickel, and zinc bound by a hexaanionic cryptand where carboxamides are anionic N-donors. The metal complexes have been investigated by X-ray crystallography, and possess metal centers in trigonal monopyramidal geometries with intermetallic distances spanning d(Mn,avg) = 6.080 Å to d(Ni,avg) = 6.495 Å. All complexe...

متن کامل

The pH effect on complexation of Alkali metal cation by p-sulfonatocalix (4) arene in aqueous solution

The complexation of Alkali metal cations by the water-soluble p-sulfonic acid calix(4)arenewas thermodynamically characterized using spectrophotometeric data which are consistentwith the formation of a 1:1 complex resulting from electrostatic interactions between thesulfonato groups and alkali metal cations. In this study, we determined the formationconstants (log K) of the complexes and have c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016